A shared parameter mixture model for longitudinal income data with missing responses and zero rounding

نویسندگان

چکیده

The analysis of longitudinal income data is often made challenging for several reasons. For example, in a national Australian survey on over time, non-negligible proportion responses are missing, and it believed the missingness mechanism non-ignorable. Also, there large number reported zero incomes, some which may be true zeros (corresponding to individuals who legitimately do not earn an income), while false choosing round their zero). We propose new shared parameter mixture (SPM) model analysing semi-continuous data, addresses two challenges non-response rounding. This accomplished by jointly modelling individual's underlying together with probability rounding zero, where both probabilities permitted vary smooth manner non-zero income. Applying SPM reveals that average, older female long-term health condition considerably less likely income, tended highest male fixed-term/permanent job contracts between ages 50 60. Furthermore evidence rounding, conditional assumed mechanism, incomes at higher lower ends more report

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A MODEL FOR MIXED CONTINUOUS AND DISCRETE RESPONSES WITH POSSIBILITY OF MISSING RESPONSES

A model for missing data in mixed binary and continuous responses, which can be used on cross-sectional data, is presented. In this model response indicator for the binary response can be dependent on the continuous response. A closed form for the likelihood is found. For data with a complicated pattern of missing responses some new residuals are also proposed. The model of multiplicative heter...

متن کامل

Modeling Change in the Presence of Non-Randomly Missing Data: Evaluating A Shared Parameter Mixture Model.

In longitudinal research, interest often centers on individual trajectories of change over time. When there is missing data, a concern is whether data are systematically missing as a function of the individual trajectories. Such a missing data process, termed random coefficient-dependent missingness, is statistically non-ignorable and can bias parameter estimates obtained from conventional grow...

متن کامل

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Transition Models for Analyzing Longitudinal Data with Bivariate Mixed Ordinal and Nominal Responses

In many longitudinal studies, nominal and ordinal mixed bivariate responses are measured. In these studies, the aim is to investigate the effects of explanatory variables on these time-related responses. A regression analysis for these types of data must allow for the correlation among responses during the time. To analyze such ordinal-nominal responses, using a proposed weighting approach, an ...

متن کامل

a model for mixed continuous and discrete responses with possibility of missing responses

a model for missing data in mixed binary and continuous responses, which can be used on cross-sectional data, is presented. in this model response indicator for the binary response can be dependent on the continuous response. a closed form for the likelihood is found. for data with a complicated pattern of missing responses some new residuals are also proposed. the model of multiplicative heter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Australian & New Zealand Journal of Statistics

سال: 2021

ISSN: ['1369-1473', '1467-842X']

DOI: https://doi.org/10.1111/anzs.12323